Tooth Segmentation From Cone-Beam CT Using Graph Cut

نویسندگان

  • L. T. Hiew
  • Kelvin W.C. Foong
چکیده

Cone beam computed tomography (CBCT) can provide dentists with accurate 3D diagnostic images of the maxillofacial region at a lower irradiation dose compare to conventional medical CT. Due to low image contrast, higher image noise and missing image boundaries, tooth segmentation in CBCT is difficult even with experienced radiographic interpreters. In this paper, we proposed a graph cuts segmentation approach of obtaining the 3D tooth model from CBCT images. A 3D Markov Random Fields (MRF) is used to model CBCT 3D images. We then used graph cuts to obtain the optimal image segmentation. For a total of 25 teeth data sets, our results shows an average dice similarity coefficient of 0.89.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Segmentation of Large Periapical Lesions toward Dental Computer- Aided Diagnosis in Cone-Beam CT Scans

This paper presents an experimental study for assessing the applicability of general-purpose 3D segmentation algorithms for analyzing dental periapical lesions in cone-beam computed tomography (CBCT) scans. In the field of Endodontics, clinical studies have been unable to determine if a periapical granuloma can heal with non-surgical methods. Addressing this issue, Simon et al. recently propose...

متن کامل

Evaluation of methods of co-segmentation on PET/CT images of lung tumor: simulation study

Introduction: Lung cancer is one of the most common causes of cancer-related deaths worldwide. Nowadays PET/CT plays an essential role in radiotherapy planning specially for lung tumors as it provides anatomical and functional information simultaneously that is effective in accurate tumor delineation. The optimal segmentation method has not been introduced yet, however several ...

متن کامل

3D Lung Tumor Motion Model Extraction from 2D Projection Images of Mega-voltage Cone Beam CT via Optimal Graph Search

In this paper, we propose a novel method to convert segmentation of objects with quasi-periodic motion in 2D rotational cone beam projection images into an optimal 3D multiple interrelated surface detection problem, which can be solved by a graph search framework. The method is tested on lung tumor segmentation in projection images of mega-voltage cone beam CT (MVCBCT). A 4D directed graph is c...

متن کامل

Automatic Detection and Classification of Teeth in CT Data

We propose a fully automatic method for tooth detection and classification in CT or cone-beam CT image data. First we compute an accurate segmentation of the maxilla bone. Based on this segmentation, our method computes a complete and optimal separation of the row of teeth into 16 subregions and classifies the resulting regions as existing or missing teeth. This serves as a prerequisite for fur...

متن کامل

A comparative performance of gray level image thresholding using normalized graph cut based standard S membership function

In this research paper, we use a normalized graph cut measure as a thresholding principle to separate an object from the background based on the standard S membership function. The implementation of the proposed algorithm known as fuzzy normalized graph cut method. This proposed algorithm compared with the fuzzy entropy method [25], Kittler [11], Rosin [21], Sauvola [23] and Wolf [33] method. M...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010